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Abstract. The theory of electromagnetic waves in a liquid crystal with the dielectric tensor 
varying from plane to plane is developed, using the method of geometrical optics, or 
equivalently the WKB approximation. The approximation is shown to apply when the wave- 
length is slowly varying and when the wavelength is small compared with the pitch of the 
director. Only normal propagation is considered. Explicit formulae for the propagating fields 
are derived. It is found that in first approximation the fields are plane polarised in directions 
that rotate around the normal to the planes in step with the director. 

1. Introduction 

There are only a few cases in which an exact solution of Maxwell’s equations for 
propagation of electromagnetic waves in a liquid crystal can be made. Mauguin [l], 
Oseen [2], and de Vries [3] gave the analysis for a cholesteric structure, in which the 
director has the form n(z)  = (cos @, sin 4, 0), with @ proportional to z .  Their work was 
reviewed and extended by de Gennes [4], by Peterson [ 5 ]  and by Oldano et a l [ 6 ] .  Ong 
and Meyer [7] gave the solution in case of a periodically bent nematic crystal, having 
n ( z )  = (sin 8,0, cos e), with 8 proportional to 2. (Also, they gave a very valuable list 
of references to previous work and applications.) However, for more complicated 
variation of the director in space, since there is no exact treatment, there is motivation 
for an approximate discussion that shows semiquantitatively what can take place. 

In this paper it is shown that a complete treatment of the wave propagation in a liquid 
crystal, with the dielectric tensor varying in one direction, can be made in a geometrical 
optics or WKB type of approximation. That is, the dielectric constant of the form 

E&) = E d n B  + (Ell - El)n,np 
with arbitrary dependence on z is considered. The director may have any direction, so 
n(z)  = (cos @ sin 8, sin @ sin 8, cos e), and 8 and @ are not necessarily linear in z .  Thus, 
cholesterics with non-helical directors and smectics with variation of E , ,  E I I ,  n from plane 
to plane are treated. 

It turns out that the approximation applies only when the wavelength is slowly 
varying (dA/dz < 1) and when it is small compared with the pitch of the director 
( ( c / w )  d@/dz < 1) so the approximation holds only when the variation of E . ~  with z 
over a wavelength is small. 
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There are two modes of propagation, say A and B, which can be described con- 
veniently in terms of unit vectors k and r, where k is in the z direction and r is in the 
direction of the projection of the director n in the xy plane. It is shown that, in a first 
approximation, mode A has in-phase components of E in the r and k directions, mode 
B in the k X rdirection only. In the next approximation, out-of-phase components come 
in in the other directions. Explicit formulae for these components are obtained. 

Previously Ong and Meyer [8] applied the geometrical optics approximation in the 
case where n(z)  = (sin 8 ,0 ,  cos e), with e ( z )  arbitrary. The approximation itself, as 
applied to Maxwell fields in a material with a dielectric tensor, was reviewed by Nave 
and Gibbons [9]. The geometrical optics approximation, for a system with a function 
of z only, coincides with the WKB approximation, as generalised to a many-component 
problem. One makes the generalisation, as in 0 3 below, using ideas developed by Pauli 
[lo] in a quantum mechanical application. 

Another important technique, which can be applied to the study of transmission in 
a material with a z-dependent dielectric tensor, is the transfer matrix method. This was 
reviewed and applied by, for example, Sprokel [ l l ]  and by Khoo and Hou [12]. The 
present method gives a quick physical picture of what happens for normal propagation 
but the transfer matrix method applies more generally for non-normal propagation. 

2. Basic equations 

The material considered is non-magnetic, so B = p,@, but has a tensor dielectric 
constant, so D, = E , , E , ~ ~ ~ ,  with E , ~  varying in one direction only, say z .  The starting 
point is Maxwell’s equations: 

v x H = aD/at 

V . B = O  V * D = O  

V X E = -dB/at 

in SI units. In the usual way, complex solutions will be found and the real parts may be 
taken at the end of the calculation. 

The time dependence exp( -iot) is assumed, in which case the divergence equations 
follow from the curl equations. Then if H is eliminated, the problem of finding solutions 
reduces to the problem of solving the equation 

V(V - E )  - V 2 E  = p0w2D. 

Axial propagation is considered so there is no dependence on x and y. In this case 
the problem becomes 

-a2&/az2 = (w /c )~ (E , ,E ,  + E ~ ~ E ,  + E,&) 

-a2Ey/dz2 = ( W / C ) 2 ( E y x E x  + EYYEY + EyzE,) 
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Here one can solve for E, 

E ,  = - ( E d ,  + EzyEy)/Ez, 

(a2/az2 + c,/h2)E, + (5,,/h2)Ey = 0 

(c,,/h2)E, + (a2 /az2  + Cyy/h2)Ey = 0 

and substitute back to get to the two-by-two system 

where the functions Cii(z) are defined by 

(3) 

The parameter h is included to mark the order of the terms in the approximation to be 
made. It cancels out of the calculation later when the results are expressed in terms 
of E a p  

3. The slowly varying wavelength approximation 

A solution is set up as a series in increasing powers of h and the approximation is made 
by truncating the series. The substitution 

E,  = (E:’) + hE$’) + . . .) exp(i/h) / p  d z  (6a) 

E,  = ( E f )  + hE$) + . . .) exp(i/h) J p d z  (6b)  

is made into (4) and the solution is considered in different orders of h. Here E:!\, p ,  and 
J”p d z  are all functions of z ,  to be determined. Physically one understands that E(o) + 
hE@) determines the polarisation directions of the propagating modes and that 2nh/p is 
the local wavelength A. The expansion parameter h,  standing alone, cannot be given 
any physical significance since it cancels out at a later stage when the unknowns are 
determined. Evidently w / c  could be used as the expansion parameter and h not intro- 
duced at all, but the present technique allows for solving (4) when is not proportional 
to ( o / c ) ~ .  The first contribution to the solution, given by the terms proportional to hW2, 
is to be found from 

( -p2 + c,,)E:o) + C,Ef) = 0 

cy,E:o’ + (-p2 + cyy)E$0) = 0. 

( - p 2  + c,)~:’) + c X y ~ $ )  = -i(ap/az)EL0) - 2ip a~LO)/az 

C,,E$~) + ( - p 2  + c y y ) ~ $ )  = -i(ap/az)E$O) - 2ip a~$O)/az. 

(7a) 

(7b)  

@a) 

(8b)  

The next order is provided by the terms proportional to h-l: 
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Evidently ( 7 )  just expresses the eigenvalue problem for the two-by-two matrix 5;. Let 
the solutions of the eigenvalue problem be 

P i  
AY 

and 

P i  CB ( mBx) 
BY 

where mf + m$ = 1 in each case. The eigenvalue problem is to be solved at each value 
of z so p2, C, m all are functions of z .  ' 

However, the z dependence of C is determined by the requirement that (8) be 
solvable for the next order Eil) and E$?). Consider either solution A or B of ( 7 ) .  Then 
the determinant of the coefficients on the left in (8) is zero. In this case, as is well known, 
there is a solution only if the solution of the transposed homogenous set of equations is 
orthogonal to the vector on the right. Since gxy = Cy;,,, the solution ism,, my. In the vector 
on the right E(O) = Cm is to be used. The condition for solvability is then 

m,[(ap/dz)Cm, + 2p a(cmx)/az] + my[(ap/az)Cmy + 2p a(cm,)/az] = 0. 

Because mf + my2 = 1 this simplifies to 

(ap/az)c  + 2p aC/az = o 
which implies that C is proportional 

At this stage, with only the E(O)-terms in the series retained, the fields are given by 

Although this result gives a useful first impression of the modes of propagation, it is 
interesting also to look at the next higher level of approximation, as given by the E(')- 
terms. 

To obtain the next order terms in the solution, one must solve (8) for E$') and E!) 
For solution A for example the equations are 

( - p i  + f x x ) E ! 8  + <xyEg$ = - i ( a p A / a z ) m A . r / 6  - 2 i p A ( a / a z ) m h / K  (loa> 

gYx~bt?  + (--pi + fYy)~L!$ = - i ( a p A / a t ) m A y / K  - 2 i ~ A ( d / a z ) m A y / 6 -  (lob) 

Let the solution be 

E$) = a m A  + /3mB (11) 
where a! and /3 are to be determined. When this form is used in the equations above, 
the matrix f just makes factors of p i  and p i ,  so the system simplifies to 

( - P i  +P$)PmBx = - i ( a p A / a z ) m k / K  - 2 i p A ( a / a z ) m ~ / K  

( -p i  + p$)PmBy = -i(apA/az)m,y/GG - 2 i ~ A ( a / a z ) m A y / 6 .  
(12a) 

(12b) 

Now /3 can be found by multiplying by mBx, mBy and adding. Since mA and mB are 
orthogonal, the result simplifies to 

p = [ - 2 i a / ( - P i  +Pi)l(mBx amAx/az + mBy amAy/az). (13) 
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Equations (10) do not provide any information on CY. Actually CY will be determined by 
the requirement that the next order equations, for E(*), be solvable. However the a- 
term will be disregarded entirely at this point because it is in the mA-direction, as is the 
E(O)-term, and so makes a less-interesting contribution. The magnitude of the a-term is 
discussed in the conclusion. Thus, to order h ,  one solution is taken to be 

and the other is found by interchanging subscripts A and B. One finds the two possible 
modes of propagation by solving the eigenvalue problem for the matrix (. There is an 
overall constant factor allowed in each solution corresponding to the choice of the 
constant in the integral. 

At this point one can see why the expansion on h is for slowly varying wavelength. 
Disregard the overall constant factor. In (6) the dominant behaviour for small h is 
provided by the exp(i/h)Jp d z  factor. The next contribution is provided by the E(’)- 
terms whose size is estimated by p-l’’. The E(’)-terms give the next higher-order con- 
tributions in h and so on. However, one can write, disregarding a constant factor, 

which leads to 

The approximation will have validity therefore if 

I p l  2p2 d z  < l .  

The local wavelength is 

A = 2nh/p 

so the criterion for the applicability of the approximation is 

IdA/dz/ < 4n. (16) 
An estimate of dA/dz is (difference in length of two neighbouring waves)/(wavelength). 

4. The dependence on the dielectric constant 

The material considered here has dielectric tensor 

E,&) = E A p  + (Ell - O V g  

where E J Z )  and E I ~ ( Z )  are eigenvalues and the director n ( z )  has unit length. The eigen- 
value E I ~  is associated with eigenvector n; the eigenvalue E~ has as eigenvector any vector 
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perpendicular to R .  All the results can be expressed in terms of E, ,  &ll, and the polar 
angles e ,@ of R :  

n, = sin 8 cos @ ny = sin 8 sin @ n,  = cos e. 
The matrix f is found straightforwardly by substituting into the definition (equations 

(5)). Here and below, h is set equal to unity since it cancels out of the final results 
anyway. The result is 

f =  ( ; ) , [ E l  + E ,  sin2 8 + cos2 8 (COs2@ sin 4 cos 4 sin sin2 @ @ cos $11. (17) 
E , ( E / ~  - E ~ )  sin2 e 

The solutions of the eigenvalue problem for this matrix are given in table 1. 

Table 1. 

Solution Eigenvalue, p 2  Eigenvector, m 

E l & ; ;  cos 4 
E ,  sin* e + Ell cos2 e (sin 

A 

B 
-sin 4 

( ,,,J 

5. Results 

The components E, and Ey are found by using the solutions of the eigenvalue problem 
in (9) or (14). The results are conveniently written in terms of unit vectors kandr ,  where 
k is in the z direction and r is in the direction of the projection of n in the XY plane. In 
terms of components kis (0, 0 , l )  and r i s  (cos @, sin @, 0). From E, and Ey one obtains 
E, using (3). 

Consider first the approximation carried as far as the E(')-terms only, as given by (9). 
B is known as (-i/o)V X E .  Here only V, contributes and, in applying it, the dependence 
on z in thep-*l2-factor is disregarded as contributing in lower order in the slowly varying 
wavelength approximation. Thus B is given simply by (p/w)k X E .  

For solution A the results are 

k, 
( q  - E J  sin 8 cos 8 
E ,  sin2 8 + cos2 e 1 'I4 ( r  - 

E~ sin2 8 + cos2 e 
E = (  

E ,  Ell 

B='(  'I4 k 
c sin2 e + ell cos2 e 
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and for solution B one finds 

E = ~ ; ~ / ~ k ~ r e x p i  

1 
B =  --&:/'reexpi 

C 

Positive roots are used in the integrands so as to have propagation in the positive z 
direction. 

It is seen that, in mode A, E has a longitudinal component but otherwise all the fields 
are transverse. In mode A, E is partly in the rdirection; in mode B, B is in the rdirection. 
All the fields have a polarisation direction that rotates about the z axis in step with the 
director. 

The next approximation, which includes the E(')-terms, is provided by using the 
solutions of the eigenvalue problem in (14). For solution A the result is 

E = (  r - 2i 
cl sin2 e + cos2 e 

(.q - E ~ )  sin 8 cos 8 
E ,  sin2 e + cos2 e k x r -  

and for solution B one finds 

E ,  sin2 e + cos2 e 
(E, - ell) sin2 e 

w d z  w d z  

The magnetic field B is known as (-i/w)V X E. Here only V, contributes but, since so 
many of the factors are z-dependent, it would be complicated to set down specific 
formulae. In this approximation all the components that were absent in zero order now 
appear, proportional to d@/dz and n/2 out of phase. 

Now it is seen that this geometrical optics or WKB method also requires that the pitch 
be large compared with the wavelength. The series solution, equation (6), will only be 
sensible if the E(')-terms are small compared with the E(')-terms. The estimate of the 
ratio of the sizes of these terms in (20) and (21) is ( c / w )  d@/dz so that the requirement 
is 

The left-hand side here is the ratio of the wavelength to the pitch. 
( c / w )  d@/dz  < 1. (22) 

6.  Conclusions 

The main results are formulae (18) and (19) for the electric and magnetic fields, in the 
first approximation, for the two modes of propagation. It is easy to visualise the result. 
In mode A the electric field has a longitudinal component; otherwise all the fields are 
transverse. The transverse parts of the fields are either parallel or perpendicular to the 
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transverse component of the director and these polarisation directions change from 
layer to layer, tracking the director. 

It is expected that this WKB series will have rapid convergence, since this is the case 
in the ordinary WKB treatment. Some quantitative remarks about this question can be 
made. The process gives a series solution to the coupled system (equations (4)). The 
usefulness of the series may be judged by comparing the different terms in the series, as 
in (15). Consider solution A and the terms proportional to mA in E(') + E('). After a 
lengthy calculation one finds 

Here a was determined by requiring the equations for E(2)  to be solvable. The 
dilA/dz term in the integrand comes from pA1l2mA as in (15), and the last four terms in 
the integrand come from amA. In view of this result it is understood that first-order 
effects are marked by dA/dz or (c/w)(d @/dz) factors and that second-order effects have 
(dA/dz)2, (c/w)2(d @/d z)*, or A(d/dz)(d A/d z )  factors. 

A problem for the future is to analyse this same system for off-axis propagation. A 
preliminary investigation suggests that the same method will apply for paraxial waves, 
although the calculations will be considerably more complicated at every stage. 
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